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Abstract
We explore generalized point interactions in one-dimensional quantum
mechanics with two coupled channels. They represent possible self-adjoint
extensions of the nonrelativistic kinetic-energy operator. Assuming time-
reversal invariance we find a family of self-adjoint extensions with seven
parameters. This can be compared with the one-channel case in which the
corresponding number of parameters is three.

PACS numbers: 03.65.−w, 03.65.Nk, 03.67.Lx

1. Introduction

Generalized point interactions (GPIs), which represent possible self-adjoint extensions (SAEs)
of the nonrelativistic kinetic-energy (KE) operator −(h̄2/2m)∇2, have been a subject of
considerable interest in recent years. A number of papers have appeared on this subject. We
will quote some of those papers in due course as they become relevant to the context of this
paper. We confine ourselves to one space dimension. This paper is a sequel to an earlier paper
[1] in which the GPIs of the one-channel case were examined. This time we examine what
happens in the presence of two coupled channels.

We consider a situation such that a light particle is interacting with a point target that
is fixed at the origin. The target has N energy levels and its interaction with the particle
can cause transitions of the target from one level to another. Then we say that there are N
channels. The target is in the ground state in channel 1, in the first excited state in channel 2,
etc. The particle–target system is described by a wavefunction ψ(x, t) with N components,
ψi(x, t) (i = 1, 2, . . . , N) where x is the coordinate of the particle and t is the time. The word
‘channels’ can be confusing. Even when N = 1, the particle can be in different partial-wave
states. In one space dimension there can be two partial waves with even and odd parities. If
the interaction potential is asymmetric as a function of x, these two partial waves are coupled
and the problem can be regarded as that of two channels: see, e.g., [2]. Throughout this paper,
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however, we mean by channels those associated with the N levels of the target. We focus on
the case of two channels, N = 2.

In the case of one channel, there is a four-parameter family of GPIs (SAEs) [1, 3–10].
One of the four parameters, which is related to time reversal invariance, is actually a trivial
one and is physically uninteresting [9]. If we require time-reversal invariance we obtain a
three-parameter family of GPIs in the one-channel case. In section 2 we show that, in the
two-channel case, there is a nine-parameter family of GPIs. Two of the nine parameters are
related to time reversal. One of the two is the same as the trivial one that appears in the
one-channel case. Requiring time-reversal invariance we obtain a seven-parameter family of
GPIs. In section 3 we examine the transmission–reflection problem in terms of the GPIs. The
results are summarized and discussed in section 4.

2. Self-adjoint extensions of the kinetic-energy operator

An operator, say A, is defined by specifying its action on every vector in a space or its dense
domain that is smaller than the entire space. The adjoint A† of operator A is defined such that

〈φ|Aψ〉 = 〈A†φ|ψ〉 (1)

for all ψ and φ. Here ψ forms the domain of A and φ the domain of A†. If the action and
domain of A are the same as those of A†, i.e., A† = A, then the operator A is said to be
self-adjoint. In the one-dimensional case, A is self-adjoint if∫ ∞

−∞
φ†Aψ dx −

∫ ∞

−∞
(Aφ)†ψ dx = 0 (2)

holds for any pair of normalizable wavefunctions ψ(x) and φ(x) in the same domain. It
is understood that the wavefunctions also depend on t in general. The φ† is the Hermitian
adjoint of φ. In the one-channel case φ†(x) is simply the complex conjugate φ∗(x). In the
two-channel case, the wavefunction has two components and we distinguish φ†(x) and φ∗(x).

Let us summarize the situation of the one-channel case which we attempt to extend to the
two-channel case. Consider the KE operator with a possible point interaction at the origin

A = − h̄2

2m

d2

dx2
(3)

where m is the mass of the particle. Equation (2) can be reduced to

− h̄2

2m

∫ ∞

−∞
(φ†ψ ′′ − φ′′†ψ) dx = h̄2

2m
[φ†ψ ′ − φ′†ψ]+0

−0 = 0 (4)

where ψ ′ = dψ/dx. It is understood that ψ(x) and φ(x) are both twice differentiable except
at x = 0 and that they both vanish as |x| → ∞. The ψ(x) and φ(x) and their derivatives are
in general discontinuous at x = 0.

Consider the boundary condition at x = 0 which was introduced by Gesztesy and Kirsh
[5] and was extensively discussed by Šeba [7, 8](

ψ ′(+0)

ψ(+0)

)
= U

(
ψ ′(−0)

ψ(−0)

)
U = eiθ

(
α β

δ γ

)
(5)

where θ , α, β, γ and δ are all real constants. The α, etc, are subject to the condition

αγ − βδ = 1. (6)

This boundary condition guarantees (4). It represents a GPI at the origin. There are four
independent parameters including θ . As was pointed out in [9], however, θ is redundant.
This is in the sense that, although the wavefunction depends on θ , observable quantities such
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as the transmission and reflection probabilities, the energy eigenvalue and the probability
density of a bound state are all independent of θ .4 In many-body problems, θ may have subtle
implications in relation to the symmetry of the wavefunction [11], but we do not consider
many-body problems in this paper. If we require time-reversal invariance of the GPI, U
and hence eiθ have to be real. In [1, 5, 7, 8], θ was set to eiθ = −1. If the interaction is
invariant under space reflection x → −x, the boundary condition has to be invariant under
ψ(±0) → ψ(∓0) and ψ ′(±0) → −ψ ′(∓0). This holds if and only if eiθ is real and α = γ .

Let us mention two special cases. For the usual δ function potential V (x) = gδ(x) where
g is a real constant, we obtain

U =
(

1 g

0 1

)
(7)

i.e., with eiθ = −1, we obtain α = −1, β = −g, γ = −1 and δ = 0. The so-called δ′

interaction, which should not be confused with δ′(x) = dδ(x)/dx, is defined in terms of

U =
(

1 0
h 1

)
(8)

i.e. (again with eiθ = −1) α = −1, β = 0, γ = −1 and δ = −h. Here h is a real constant.
These two interactions are both invariant under space reflection.

We now turn to the two-channel case. The wavefunctions have two components

ψ =
(

ψ1

ψ2

)
φ =

(
φ1

φ2

)
. (9)

The KE operator is

A = −σ0
h̄2

2m

d2

dx2
σ0 ≡

(
1 0
0 1

)
. (10)

In (4) it is understood that φ†ψ ′ = φ∗
1ψ ′

1 + φ∗
2ψ ′

2, etc. The two-component wavefunctions
ψ(x) and φ(x) are both twice differentiable except at x = 0.

Let us assume the boundary condition


ψ ′
1(+0)

ψ ′
2(+0)

ψ1(+0)

ψ2(+0)


 = U




ψ ′
1(−0)

ψ ′
2(−0)

ψ1(−0)

ψ2(−0)


 U = eiθ

(
α β

δ γ

)
. (11)

The same boundary condition applies to φ. The α, β, γ and δ are all 2 × 2 constant matrices
and U a 4 × 4 matrix. For simplicity let us assume that α, β, γ and δ are all Hermitian. In the
one-channel case we pointed out that the parameter θ is physically uninteresting [9]. We will
see that the same situation holds in the two-channel case. Boundary condition (4) leads to

(φ†ψ ′ − φ′†ψ)+0 = [φ′†(δα − αδ)ψ ′ + φ†(γβ − βγ )ψ

+ φ†(γ α − βδ)ψ ′ − φ′†(αγ − δβ)ψ]−0. (12)

In order that (12) is reduced to (4) we choose α, etc, such that

[δ, α] = 0 [β, γ ] = 0 (13)

αγ − δβ = σ0 (14)

where [δ, α] = δα − αδ, etc.
4 One of the referees gave an interesting remark which is essentially the following: consider, for example, a GPI
on a one-dimensional circle. Then parameter θ becomes relevant and describes the Aharonov–Bohm magnetic flux
penetrating that circle. We, however, think that θ is again trivial in the following sense. It is natural to require that
the wavefunction be single-valued on the circle in the absence of the magnetic field. This leads to eiθ = 1.
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There are more constraints on α, etc, that follow from (4). Rewrite (11) as

U−1




ψ ′
1(+0)

ψ ′
2(+0)

ψ1(+0)

ψ2(+0)


 =




ψ ′
1(−0)

ψ ′
2(−0)

ψ1(−0)

ψ2(−0)


 U−1 = e−iθ

(
γ −β

−δ α

)
. (15)

Express (φ†ψ ′ − φ′†ψ)−0 in terms of the wavefunctions and their derivatives at x = +0. Then
we obtain (12) in which the following substitutions are done: ±0 → ∓0, α → γ, γ → α,

β → β and δ → δ. This leads to the additional constraints

[δ, γ ] = 0 [β, α] = 0 (16)

γα − δβ = σ0. (17)

From (14) and (17) we obtain

[α, γ ] = 0 [β, δ] = 0. (18)

Therefore α, etc, all commute with one another.
Let us examine how many real independent parameters are involved in the boundary

condition. We write α as

α = a0σ0 +
3∑

i=1

aiσi = a0σ0 + a · σ (19)

where σi are the 2 × 2 Pauli matrices and a0 and ai with i = 1, 2, 3 are all real constants.
We also write β, γ and δ in the form of (19) with real coefficients b0, bi, c0, ci, d0 and di ,
respectively. Thus we have altogether 16 parameters to begin with. The a can be regarded as
a vector in a three-dimensional parameter space. Note that

δα = (d0a0 + d · a)σ0 + (d0a + a0d + id × a) · σ (20)

etc. It then follows from [δ, α] = 0 that d × a = 0. That is, d and a are parallel to each
other. (This includes the situation in which d = 0 and/or a = 0.) The commutativity of
α, etc, means that the four vectors a, b, c and d are all parallel. Among the 12 components
contained in the four vectors, only six can be taken as independent. In addition we still have
four parameters, a0, etc. We have two more constraints. If we write a as a = an where n is a
unit vector and similarly for the other three vectors with common n, (14) leads to

a0c0 − b0d0 + ac − bd = 1 (21)

a0c + ac0 − bd0 − b0d = 0. (22)

Since [α, γ ] = 0, (17) is reduced to (14). Thus we obtain eight (8 = 4 + 6 − 2) real independent
parameters. Let us add that (13) and (14) guarantee U−1U = 1 but not UU−1 = 1. The latter
requires (16) and (17).

We now require that the system under consideration is invariant with respect to time
reversal. The usual interpretation of time-reversal invariance is as follows. If wavefunction
ψ(x, t) is an admissible solution of the time-dependent Schrödinger equation, then its complex
conjugate with time t replaced by −t, ψ∗(x,−t), is also admissible. For a stationary state,
apart from its time-dependent factor e−iEt/h̄, the wavefunction can be taken as a real function.
If we take the complex conjugate of (11), U is replaced by U ∗. The usual interpretation of
time-reversal invariance requires that U = U ∗. Recall however that σ ∗

2 = −σ2 while σ1 and
σ3 are real. Hence we find α(= a0 + an · σ) 
= α∗ unless n2 = 0 and similarly β 
= β∗, etc.
This contradicts U = U ∗. Note, however, that n ·σ is invariant under rotation in the parameter
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space. Hence we can choose the coordinate axes (by rotating the axes around axis 3) such that
the σ2 term disappears. More explicitly let us rewrite ψ(x, t) as

ψ(x, t) = e(−i/2)θ3σ3χ(x, t) tan θ3 = n2/n1. (23)

In (11) replace ψ and ψ ′ with χ and χ ′, respectively. Then U is replaced by e(−i/2)θ3σ3U e(i/2)θ3σ3

in which n · σ is replaced by

e(i/2)θ3σ3(n · σ) e(−i/2)θ3σ3 = (
n2

1 + n2
2

)1/2
σ1 + n3σ3. (24)

The complex σ2 has disappeared. The boundary condition for χ∗(x,−t) is exactly the same
as that for χ(x, t). Before examining the time-reversal aspect we had eight parameters. When
time-reversal invariance as interpreted above is imposed, we are left with seven physically
interesting parameters.

Since parameter θ3 can be eliminated as shown above, one may think that it is altogether
redundant. This is, however, not necessarily the case. Suppose that the Hamiltonian of the
system contains an interaction other than one of the SAEs of the kinetic-energy operator. For
example, let the additional interaction be

V (x) =
3∑

i=1

Vi(x)σi (25)

where Vi(x) is an arbitrary real function of x with a finite range. After transformation (24)
V (x) becomes

(V1 cos θ3 + V2 sin θ3)σ1 + (−V1 sin θ3 + V2 cos θ3)σ2 + V3σ3. (26)

The σ2 term remains unless V2(x)/V1(x) = n2/n1. In this case θ3 is a physically relevant
parameter. The remaining interaction and hence observable quantities generally depend on θ3.
The σ2 term of (26) violates time-reversal invariance5. We can make the system time-reversal
invariant by choosing θ3 = 0, i.e., n2 = 0 and V2(x) = 0.

Finally let us examine the case in which boundary condition (11) is invariant under space
reflection, i.e., x → −x,ψ(±0) → ψ(∓0) and ψ ′(±0) → −ψ ′(∓0). When this reflection
is performed, (11) is transformed to


ψ ′

1(+0)

ψ ′
2(+0)

ψ1(+0)

ψ2(+0)


 = e−iθ

(
γ β

δ α

) 


ψ ′
1(−0)

ψ ′
2(−0)

ψ1(−0)

ψ2(−0)


 . (27)

The invariance with respect to space reflection requires that eiθ is real and

α = γ (28)

namely, a0 = c0 and a = c. The number of independent parameters is reduced from seven to
five. The corresponding number for the one-channel case is two.

Let us give two explicit examples. We start with the model with the two-channel
interaction

V (x) = h̄2

2m

(
g1δ(x) g12δ(x)

g21δ(x) g2δ(x)

)
g∗12 = g21. (29)

It is understood that g1 and g2 are real but g12 and g21 can be complex provided that they are
complex conjugates of each other. The δ(x) is the usual δ function. This interaction contains
four independent parameters.
5 If V (x) represents an interaction between a spin and a magnetic field, then Vi(x) → −Vi(x) under the time-reversal
operation. The σ2 term does not violate time-reversal invariance. We are assuming, however, that Vi(x) remains the
same under the time-reversal operation.
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By integrating the Schrödinger equation over the interval (−ε, ε) and letting ε → 0, we
determine the boundary condition on the wavefunction at x = 0. Matrix U (with eiθ = −1)
for this model is given by

U = −
(

α β

δ γ

)
=




1 0 g1 g12

0 1 g21 g2

0 0 1 0
0 0 0 1


 . (30)

Note that, when g12 and g21 are complex, matrix β has a nonvanishing component with σ2. As
we pointed out already this component can be eliminated. We leave the U as such, however,
so that we can see what happens when g12 and g21 are complex. In section 3 we will illustrate
a situation such that the complex phase of g12, which can be identified with −θ3, is redundant.

There is a similarity between (7) and (30). This similarity suggests that we can define a
two-channel version of the δ′ interaction as follows:

U =




1 0 0 0
0 1 0 0
h1 h12 1 0
h21 h2 0 1


 h∗

12 = h21. (31)

The h1 and h2 are real. This U contains four parameters including the imaginary part of h12.
Note that α = γ in the above two examples. The boundary conditions are both invariant under
space reflection.

3. Transmission–reflection problem

In section 2 we found a seven-parameter family of GPIs which are invariant with respect to time
reversal. A question that naturally arises here is: is seven the maximum possible number of the
parameters of such GPIs? In this connection it would be useful to examine the transmission–
reflection problem and the S matrix that is associated with it. When a wave representing a
particle is incident on a potential, it is partially transmitted and partially reflected. This can
be described in terms of transmission matrices TL and TR and reflection matrices RL and RR.
Suffices L and R refer to the situations in which a wave is incident from the left and right,
respectively. The T and R are 2 × 2 matrices.

Let us assume that there is no interaction, such as the V (x) of (25), other than one of the
GPIs at the origin. If the wave is incident in channel 1 from the left, the wavefunction can be
written as

ψ1 =
{

eik1x + RL11 e−ik1x for x < 0

TL11 eik1x for x > 0
(32)

ψ2 =
{

RL21 e−ik2x for x < 0

TL21 eik2x for x > 0.
(33)

As we said in section 1, we are considering a situation in which a particle is interacting with a
point target fixed at the origin. The k1 and k2 are related by (h̄k1)

2/(2m) = (h̄k2)
2/(2m)+�E

where �E is the excitation energy of the target. It is understood that ki > 0.
When applied to the wavefunction given above, (11) becomes


ik1T11

ik2T21

T11

T21


 = U




ik1(1 − R11)

−ik2R21

1 + R11

R21


 . (34)
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We have suppressed suffix L for brevity. Equation (34) determines Ti1 and Ri1 (i = 1 or 2).
Equation (34) is equivalent to

U−1




ik1T11

ik2T21

T11

T21


 =




ik1(1 − R11)

−ik2R21

1 + R11

R21


 . (35)

To determine Ti1 it is convenient to use (35) and eliminate Ri1. To determine RLi1 it is
convenient to use (34) and eliminate TLi1. By repeating the same procedure for the case with
an incident wave in channel 2, we can determine TL and RL which are 2 × 2 matrices.

The TR and RR of the case in which the wave is incident from the right can be related
to TL and RL through space reflection. That is, the former can be obtained from the latter by
substitutions: θ → −θ, ki → −ki, α → γ, γ → α, β → −β and δ → −δ. The results are
as follows:

TL = 2i eiθ [−β + kδk + i(kα + γ k)]−1k (36)

TR = 2i e−iθ [−β + kδk + i(αk + kγ )]−1k (37)

RL = [−β + kδk + i(αk + kγ )]−1[β + kδk + i(αk − kγ )] (38)

RR = [−β + kδk + i(αk + γ k)]−1[β + kδk − i(kα − γ k)] (39)

where

k =
(

k1 0
0 k2

)
k−1 =

(
1/k1 0

0 1/k2

)
. (40)

Note that k and k−1 do not commute with α, etc unless k1 = k2 or α, etc are all diagonal. If α,
etc are all diagonal, the model becomes trivial in the sense that the two channels are decoupled.
It can be shown that the inverse matrices that appear in (36)–(39) exist. If k1 = k2, all the
matrices commute with each other and the results given above are reduced to those of the
corresponding ones of the one-channel case, i.e., (6–9) of [9]. Note that the transmission and
reflection probabilities are independent of θ . When the boundary condition (11) is invariant
under space reflection, i.e., α = γ , we obtain RL = RR.

Let us apply the above to the δ function interaction model of (29) and (30) (with eiθ = −1).
This model with α = γ = σ0 has left–right symmetry. So we suppress suffices L and R. We
obtain

T = 2i(β + 2ik)−1k = −2i

�

(
k1(g2 − 2ik2) −g12k2

−g21k1 k2(g1 − 2ik1)

)
(41)

R = −(β + 2ik)−1β (42)

= −1

�

(
g1(g2 − 2ik2) − g12g21 −2i g12k2

−2ig21k1 g2(g1 − 2ik1) − g21g12

)
(43)

where

� = (g1 − 2ik1)(g2 − 2ik2) − g12g21. (44)

The probability current is conserved. For example, when the wave is incident from channel 1
we obtain

k1(|T11|2 + |R11|2) + k2(|T21|2 + |R21|2) = k1. (45)

In |Tij |2 and |R11|2, g12 and g21 appear always in the form of |g12|2 = |g21|2. The conservation
holds irrespectively of whether or not g12 and g21 are complex.
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The interaction can support a bound state with the wavefunction of the form of

ψ1(x) = η1 e−κ1|x| ψ2(x) = η2 e−κ2|x|. (46)

The κ1 and κ2 and then the energy eigenvalue of the bound state can be determined by

(g1 + 2κ1)(g2 + 2κ2) − g12g21 = 0 (47)

and the condition (h̄κ1)
2/(2m) = (h̄κ2)

2/(2m)−�E. Recall that g1, g2 and g12g21 are all real.
Equation (47) leads to a real energy of the bound state. The coefficients of the wavefunction
of (46) are subject to

η1

η2
= −g12

g1 + 2κ1
= g1 + 2κ1

−g21
. (48)

If g12 and g21 are complex, then η1/η2 is complex and so is the wavefunction. The expectation
values of physical quantities such as the probability density in the bound state, however, are
all independent of the complex phase of g12. We pointed out in section 2 that, by applying a
rotation around axis 3 in the parameter space, we can make β real. Then g12 and g21 are both
replaced by |g12| (see (24)). The physical quantities obtained in this representation are the
same as those obtained with complex g12 and g21.

We can define the S-matrix in the way it was done in [2]. Instead of ψi of (32) and (33)
let us use

φi,in = Aiθ(−x) eikix + Biθ(x) e−ikix (49)

φi,out = A′
iθ(x) eikix + B ′

iθ(−x) e−ikix (50)

where θ(x) = 1 (0) if x > 0 (x < 0). We define the S-matrix by


A′
1

A′
2

B ′
1

B ′
2


 = S




A1

A2

B1

B2


 . (51)

The S is a 4 × 4 matrix. (There are two partial waves in each of the two channels.) It is related
to the T and R by

S =
(

Saa Sab

Sba Sbb

)
=

(
TL RR

RL TR

)
. (52)

If we assume time-reversal invariance, the S-matrix of a two-channel system can be
expressed in terms of a 4 × 4 K matrix which is real and symmetric. The S-matrix in its
general form (with an arbitrary interaction that is not restricted to point interactions) can have
ten independent real parameters. For the GPIs that conform to time-reversal invariance we
found a seven-parameter family. Recall that, in the one-channel case, the number (three) of
parameters involved in GPIs is the same as that of the general S-matrix. The fact that the
general S-matrix of the two-channel case can accommodate ten parameters may imply that the
GPIs that we have obtained do not exhaust all possibilities.

4. Summary and discussion

This paper is an extension of [1] in which the GPIs or the SAEs of the KE operator were
examined in the one-channel case in one space-dimension. In the presence of two coupled
channels, we found a family of GPIs with nine parameters. Two of the nine parameters, θ of
(11) and θ3 of (23), are related to time-reversal invariance. We reiterated that the parameter θ
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is physically uninteresting. If the Hamiltonian of the system has no interaction other than one
of the GPIs, θ3 is a redundant parameter. Even if θ3 
= 0, the system conforms to time-reversal
invariance. In a more general situation such that the Hamiltonian contains an additional
interaction of an arbitrary form, θ3 becomes relevant. If θ3 
= 0, time-reversal invariance is
violated. Observable quantities in general depend on θ3.

By requiring time-reversal invariance and leaving θ and θ3 out, we obtain a seven-
parameter family of GPIs. On the other hand, the S-matrix in its general form that appears
in the problem of transmission and reflection with an arbitrary interaction can have ten real
independent parameters. This may imply that we have not exhausted all possible GPIs. We
assumed that the matrices α, β, γ and δ of (11) are all Hermitian. That was for simplicity. As
far as we know, our analysis is the first one in which GPIs as SAEs of the KE operator of the
two-channel case are examined.

In their interesting paper, Wu and Yu recently proposed a model of quantum memory, an
essential component of any quantum computer [12]. They constructed the model by means
of a point interaction which couples two channels in one space dimension. They used the
so-called pseudo-potential which contains three parameters. In the one-channel case, the
S-matrix that they obtained can be reproduced by means of our one-channel GPIs with three
parameters. They used the same pseudo-potential with three parameters in the two-channel
case. The GPIs of the two-channel case with seven parameters that we have presented will
give a framework with which one can construct more general or alternative models along the
lines suggested by Wu and Yu.
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